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We consider Klein-Gordon and Dirac equations coupled to U(1)-invariant nonlinear oscilla-
tors. The solitary waves of the coupled nonlinear system form two-dimensional submanifold in
the Hilbert phase space of finite energy solutions. Our main results read as follows:

Theorem
Let all the oscillators be strictly nonlinear. Then any finite energy solution converges, in the long
time limit, to the solitary manifold in the local energy seminorms.

The investigation is inspired by Bohr’s postulates on transitions to quantum stationary states.
The results are obtained for:

e 1D KGE coupled to one oscillator [1,2,3], and to finite number of oscillators [4];

e nD KGE and Dirac eqns coupled to one oscillator via mean field interaction [5, 6].

1 Main results

We consider nonlinear Klein-Gordon equation of type

U@, t) =¢"(x,t) —m* +6(2) f(¥(0,1), z€R (1)

which describes the nonlinear oscillator coupled to the Klein-Gordon field. We suppose that

C1 f) ==VU(¥), U(y) € C*(R*R) (2) [ct
Then equation (}'Kf%s Hamiltonian with the Hamilton functional
1 .
1) = 5 [ [l 0P + 10/ OF + mlote, 0o + U(0.1) )
R

We denote the phase space £ := H!(R) @ L?(R) and suppose

inf U(¢) > —o0 (4) [uu
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Proposition I, (Well posedness) For any (¢(x,0),(x,0) € & there exists unique solution (1(z,t), ¥(z,
Cb(R, 5) to

Proof: Energy conservation H(t) = const + contraction mapping principle. |

Further we assume U(1)-invariance of the nonlinear oscillator:

C2 U(1)-invariance: Uy) = u(|y]) (5) [u1
Then
fW) = a(lW)y = f(ev)=e"f(¥),0 € R (6) [fa

Solitary waves are the solutions v, (z,t) = ¢(x)e™!. The solutions exist only for w € Q where

2 C (—m,m), and the amplitude is a solution to

Nonlinear Figenvalue Problem: — W (z)=¢" (v) —m>p(x)+5(z) f(¢(0)) (7)
Definition 2 Solitary manifold: S={e?¢ (x):weQ, 0€(0,27]}.
Finally, we assume

G1
C3 Equation (%Tis strictly nonlinear (8) [c3

which means the following:

U@W) =u([Yf’) = Zgulo[¥, uy >0, N=2 (9) [sn

Example 1. N =2, U(y) = [¢|* = f(y) = —4[v|*
Example 2. Ginzburg-Landau potential N =2, U(¢) = */4 — % /2 = f(¢) = —|¢ > + 1
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1
Main Thm. Let C1 — C3 hold. Then for any solution v € C(R, H'(R)) to Eqn (%% the global

attraction holds
Hy, (R)
bt — S, t— Foo (10) [ea

P(t)

Convergence (%) means that

dist ((t),S) = érelf dist (¢(t), ) — 0, t— oo

where  dist (¢, @) : Z 271 ||y — S| i1 (- r,R)

a
Generalizations: Convergence (}%U) is extended to eqns

Pz, t) = ¢, t) —m*P+ Zé v — o) fr((wy, 1),  wER (2007)
D) = A(,t) —mP + p(a) f((D (1), ), z €R" (2008)
ip(z,t) = (a-p+Bm)e+p)f(U(1),p)), z €R" (2009)

For p(z) we assume the Wiener condition:

p(k) #0, keR" (W)



which is analogue of the Fermi Golden Rule.

Open Questions: 1. The proving of
(1) ~ du(0)e, t— o

with some fixed wy and ¢.
I1. The proving of (ﬁ%) and (}ﬁ% for general f(z,v¢) =—-V,U(x,v)

U(wt) =" (,t) —m*(@,t) + f (2, ¥(2,1))

Methods: The proof of global attraction (%) is based on a novel strategy:

I. Omega-limit trajectories

II. The Fourier integral representation
Y(x,t) = [ e“(x, w)dw

iw+t

Ezample: for solitary wave ¢(z,t) = ¢(x)e

(W) = 6w — wy)o(z)

III. Dispersive radiation in continuous spectrum

IV. Titchmarsh Convolution Theorem: Nonlinear inflation of spectrum

2 Radiative mechanism

(11) [ga

(12) [ga

(13) [Fx

(14) [F

Our approach relies on two crucial observations on linear and nonlinear radiative mechanism:

linear dispersion and nonlinear inflation of spectrum.

I. Linear dispersion Let us consider linear Klein-Gordon equation with a harmonic source

B, 1) = 0" (,1) — m* + C3(x)e "
Then Principle of Limiting Amplitude holds:

Y(w,t) ~a(z)e™,  t— o0

where the limiting amplitude a(x) is a solution to stationary Helmholtz equation

—wia(z) = d"(x) — m*a(x) + C6(x)
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In the Fourier transform

C

k? — (wg —m?)

a(k) =
For |wy| > m: a(k) € L*(R), hence

[P@) )| — 00, T — 00

Conclusion: For |wy| > m the source radiates the energy to the field.
II. Nonlinear inflation of spectrum

Let us consider for example U(|¢)|?)=|¢|* Then f(v)=-V,U(|¢|*)= —4|¢|*p
Let us sibstitute (0, t) =™t + %2t with two point spectrum

Then we obtain the inflation of spectrum. Namely,

f(@/)(O, t)) ~ @Z)@@Z) — eiwgte—iwlteiw2t+ = ei(w2+Aw)t+

KG 1This means that ws + Aw also belongs to the spectrum of the solution ¢ (z, t) by the equation
(b_' And similarly we obtain that wy + 2Aw,... also belong to the spectrum.

------- ] o %* R . S SR
0% W+ W+2Aw w,+3Aw




Omega-limit trajectories

KG1
Theorem 1. (Compactness) Let ¢(t) € C(R, H'(R)) be a solution to (}T)’ Then V s, — o0

there exists a subsequence s;, — oo such that there exists the limit

Blat) = lim V(w5 +0) in C(R, L (R)
Crucial riole in our approach plays the following notion.
Definition. [(x,t) is omega-limit trajectory.
Example: ¢(x,t) ~¢(z)e+! = [B(z,t) =" p(x)e+!

(15) [oL

a
Lemma 3 Global attraction (57)) 1s equivalent to the fact that any omega-limit trajectory

B(z,t) is a solitary wave:

Bz, t) = p(z)e™!

In terms of the Fourier representation,

Blz,w) = 6(w — ws)d(z)
We prove (}'ll)'% in two steps:
Step A supp f(z,-) C [-m,m], =z €R

Step B supp B(:c, ) C {wi} reR

A. Nonlinear Kato’s theorem

Continuous spectrum of the Klein-Gordon equation

Nonlinear version of Kato’s Theorem on absence of embedded eigenvalues:

Theorem 2. (z,-) € L*(X) for z € R.

Corollary. supp B(az, ) C[-m,m], z€R
Proof: By definition of omega limiting trajectory

B, w) = lim e (z,0) = f(r,0) =0, |o] > m

by the Riemann-Lebesgue Theorem.

U(x,t) =" (z,t) — m*Y(z, 1), b(x,t) = ellka=wt)

W=k +m? = weX:=(—o0,—m]U[m,o0)

(16) [5s

(7 [

(18)

(19)



B. Nonlinear spectral analysis

Next we should prove supp f(z,-) = {w,} :
Theorem 4 3(z,w) = 0(w — wy)p(x) e Bz,t) = d(x)e+

. KG1 olt .
For the proof, we need some equation for 3. Namely, (h’)*and (Hﬁ imply that

Blx,t) = 5"(x,t) —m*B +6(x) f(5(0,1))

In the Fourier transform:

BF= F()=a(1 ()P =Alt)(1). At)=a(lx(H)]?)

~ ~ KG1bF
Then F(w)=A x4, hence (20) reads

—?B(z,w) = "z, w)—m?B + 6(x)A 7

Lemma supp B(x, ) =supp 7, Vo € R
KG1bF
Corollary (2T) = Spectral Incluzion:
supp A x v C supp v

Spectral Incluzion : supp A %5 C supp 7
It is well known: supp A x5 C supp A + supp 7

The Titchmarsh Convolution Theorem:
[supp A %3] = [supp A] + [supp 7]
where [X] is the convez hull of the set X.
Now the Spectral Incluzion reads

[supp A] + [supp 4] C supp

Corollary I. [supp A] = {0} = A = C(w).
Hence, A(t) := a(|y(¢)]?) = C

Corollary II. CIV = ~(t)7(t) = const. Hence,
7 %4 = C16(w), where ¥(w):=7(-w).

Now TCT implies [supp 7]+ [—supp 7]={0}. Hence,
[supp ¥]|={ws} = 7=Cd(w—wy)

(20)

(21)

(22)

(23)

(24)



3 Physical motivations

1) N. Bohr in 1913 postulate the Quantum Transitions
(QT) |E-) — |EY)
|EL) are Quantum Stationary Orbits

Possible mathematical interpretation of the posulate: Long-time asymptotics

(A) U(x,t) ~ Si(x), t — +oo
Q) W(t)
O O

attractor

For dissipative systems convergence (A) is known since 1975 for all finite energy solutions
to Navier-Stokes, reaction-diffusion, nonlinear parabolic eqns: Foias, Temam, Henry, Hale, Babin,
Vishik, Chepyzhov, and others.

i) In bounded regions; ii) In global energy norm,; iii) For ¢t — +oc.

2) Schrodinger in 1926 identified the quantum stationary orbits with waves of type
|E) = ¢(x)e™",  w=EJh
Then asymptotics (QT) reads,
(AS)  (x,t) ~ dr(x)e™*!, t— Foo

3) Nonlinear coupled Maxwell-Schrodinger eqns appears in the first Schrodinger papers 1926:
[0, =V (2, ) = Vet (2) ]t = [V = A2, 1) = A ()]*

OV (2, t)=p=|d(z,t)2, «€R?

DA(ZL‘,t) =j= m {77/)(1‘, t) HV—A(%t)—Aext@)W}

T m
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4) Nonlinear coupled Maxwell-Dirac Equations were introduced in 1927:

ViV = Ap(2) = AT (@) [ () =map (2)
zeR?

OAH () =(x)y" 7" ()

(A) reads for the M-S and M-D equations
(AS') ((x,1), Alx, 1) ~ (e (x), Ax(x)), t — o0

corresponding to the symmetry gauge group

(U(x,1), A(x, 1)) = (e"(x, ), A(x, 1))

Open Problem: Proof of (AS’) for M-S and M-D.

5) Diffraction “double slit” experiment:
Davisson and Germer 1924-1927, Tonomura et al. 1989

screen
# ° o
VaVaVaVaE: —
S °
Lo o )
' —— o
S Lo (]
'\\ 3 T —

Mathematical treatment: long time soliton asymptotics

(1), Alx, 1)) ~ Y (U (x = vEE 2D, AL (x — viE))E — oo.

k
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6) Aharonov-Bohm effect: shift in magnetic field

screen
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